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Abstract. Let R be a commutative Noetherian ring. It is shown that the finitely gener-
ated R-module M with finite Gorenstein dimension is reflexive if and only if My is reflexive
for p € Spec(R) with depth(Rp) < 1, and G-dimp, (My) < depth(Ry) — 2 for p € Spec(R)
with depth(Rp) > 2. This gives a generalization of Serre and Samuel’s results on reflexive
modules over a regular local ring and a generalization of a recent result due to Belshoff. In
addition, for n > 2 we give a characterization of n-Gorenstein rings via Gorenstein dimen-
sion of the dual of modules. Finally it is shown that every R-module has a k-torsionless
cover provided R is a k-Gorenstein ring.
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1. INTRODUCTION

Let R be a commutative Noetherian ring with identity and let M be a finitely
generated R-module. For an R-module M, the dual M* of M is the R-module
Homp (M, R). There is a natural evaluation map dp;: M — M** and M is called
reflexive provided §j; is an isomorphism. It is clear that every finitely generated free
module is reflexive. In 1958, Serre proved that every reflexive module is free provided
R is a regular local ring of dimension at most 2. Later, Samuel extended this result
by showing that over a regular local ring of dimension at most 3, an R-module
M is reflexive if and only if pdgM < 1 and for every non-maximal prime ideal p,
the localization M, is free over R,. Recently, Belshoff considered an analogous
question for modules over Gorenstein rings of low dimension. In particular, there is
a notion of Gorenstein dimension for R-modules M, which satisfies the inequality

The research of S. Yassemi was in part supported by a grant from IPM No. 90130214.

663



G-dimp(M) < pdg(M). This provides a natural setting for seeking extensions of
the results of Serre and Samuel. In [3], Belshoff established the following:

(1) If R is a Gorenstein local ring of dimension at most 2, then every reflexive
module M has G-dimpg (M) = 0.

(2) If R is a Gorenstein local ring of dimension 3, then an R-module M is reflexive if
and only if G-dimg (M) < 1 and the localization M, has Gorenstein dimension
0 over R, for every non-maximal prime ideal p.

In Section 2 we give a generalization of Belshoff’s result (see Theorem 2.3). Recall
that a ring R is called n-Gorenstein if the injective dimension of R is at most n. In
Section 3, for n > 2 we give a characterization of n-Gorenstein rings via Gorenstein
dimension of the dual of modules (see Theorem 3.4).

In Section 4 we bring a characterization of k-torsionless modules with finite Goren-
stein dimension (see Theorem 4.5). Also this section concludes with a discussion of
k-torsionless covers. Recall that for a class 2 of modules and a module M, an R-
homomorphism ¢: X — M is an 2 -cover of M provided it is left universal among
all homomorphisms Y — M with Y € 2 and, further, any X — M factors through
© via an automorphism X — X. In addition, we investigate necessary and sufficient
conditions which lead the tensor product of k-torsionless modules to be k-torsionless.

2. REFLEXIVE MODULES

This section contains some general remarks about reflexive modules with finite
Gorenstein dimension. Indeed we present generalizations of the results of Belshoff [3],
Serre [12] and Samuel [11].

First, we recall some necessary definitions which will be used in this section.

Definition 2.1. Let R be aring and let M be an R-module. The dual of M is the
module Hompg (M, R), which we usually denote by M™*, the bidual then is M**, and
anologous conventions apply to homomorphisms. The bilinear map M x M* — R,
(x,¢) — @(x), induces a natural homomorphism dp;: M — M**. We say that M
is torsionless if d); is injective, and that M is reflexive if §,; is bijective.

In [1], Auslander and Bridger introduced the Gorenstein dimension, G-dimpg (M),
for every finitely generated R-module as follows:

Definition 2.2. A finitely generated R-module M is said to have G-dimension
zero (G-dimp(M) = 0) if and only if M satisfies the following three properties:

(i) M is reflexive,
(ii) ExtfR(M, R) =0 for each i > 1,
(iif) Exti(M*, R) =0 for each i > 1.
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Also we say that G-dimpg(M) < n if there is an exact sequence
0—G,—...— Gy —G —Gy— M —0

such that G-dimpg(G;) = 0 for each i > 0.

For every R-module M the inequality G-dimp(M) < pdr(M) is proved by Aus-
lander and Bridger in [1]. They showed that the equality holds if pdz (M) is finite.
Furthermore, the Gorenstein dimension of an R-module is closely related to its depth,
ie., G-dimp(M) = depth(R) — depthr(M). This equality is called the Auslander-
Bridger formula.

The following theorem is special case of [4, Proposition 1.4.1] and gives a general-
ization of [3, Proposition 1.1, Proposition 1.7].

Theorem 2.3. Let R be aring and let M be an R-module with G-dimp (M) < cc.
Then the following statements hold.
(1) M is torsionless if and only if
(i) M, is torsionless for p € Ass(R), and
(i) G-dimpg,(M,) < depth(Ry) — 1 for p € Spec(R) with depth(R,) > 1.
(2) M is reflexive if and only if
(i) M, is reflexive for p € Spec(R) with depth(R,) < 1, and
(i) G-dimpg,(M,) < depth(Ry) — 2 for p € Spec(R) with depth(R,) > 2.

Proof. (1) Assume that M is torsionless. By [4, Proposition 1.4.1], we must
show that G-dimpg, (M,) < depth(R,) — 1 for p € Spec(R) with depth(R,) > 1.
Note that according to [4, Proposition 1.4.1], depthp_ (M;) > 1 for p € Spec(R) with
depth(R,) > 1. Now by the Auslander-Bridger formula we have

G-dimpg, (M) = depth(Ry) — depthp (M) < depth(R,) — 1.

Conversely, by [4, Proposition 1.4.1], it suffices to show that depthp (M) > 1 for
p € Spec(R) with depth(R,) > 1. By hypothesis and the Auslander-Bridger formula

we have
depth(R,) — depthp (M) = G-dimpg, (M,) < depth(R,) — 1,

therefore, depthp (M) > 1 for p € Spec(R) with depth(R,) > 1.
(2) is proved along the same lines as (1). O

The following two results which can be found in [3], [12] and [11], follow from
Theorem 2.3.
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Corollary 2.4. Let (R, m) be a regular or Gorenstein ring with dim(R) < 2. If
M is a reflexive R-module, then pdg(M) =0 or G-dimpg(M) = 0.

Proof. By [4, Theorem 2.2.7] or [6, Theorem 1.27] the projective dimension
of M is finite or the G-dimension of M is finite, since R is regular or Gorenstein,
respectively. By assumption depth(R,) < 2 for all p € Spec(R). If depth(R,) = 2,
then by Theorem 2.3(2), pdg, (My) = 0 (G-dimpg, (M) = 0). Otherwise, M, is
reflexive by Theorem 2.3(2) and by [4, Exercise 1.4.19] we have

depthp (My) = depthp (Homp, (M, Ry)) > min{2, depth(R,)}.
So pdg, (My) = 0 (G-dimg, (M,) = 0). O

Corollary 2.5. Let (R, m) be a regular or Gorenstein ring of dimension 3. An R-
module M is reflexive if and only if pd g (M) < 1 or G-dimg(M) < 1 and pdg (M) =
0 or G-dimg, (M,) = 0, respectively, for every prime ideal p distinct from m.

Proof. It is proved along the same lines as Corollary 2.4. O

3. CHARACTERIZATION OF n-(GORENSTEIN RINGS

In this section, for n > 2 we give a characterization of n-Gorenstein rings via
Gorenstein dimension of the dual of modules. Before that, we recall some definitions
and properties. We follow standard notation and terminology from [7].

Definition 3.1. A Gorenstein ring with idr(R) at most n is called n-Gorenstein.

Definition 3.2. A submodule T of an R-module N is said to be a pure sub-
module if 0 - A®r T — A®pg N is exact for all R-modules A, or equivalently, if
Homp(A, N) — Hompg(A, N/T) — 0 is exact for all finitely presented R-modules A.

An exact sequence 0 - T — N — N/T — 0 (or 0 — T — N) is said to be pure
exact if T is a pure submodule of N. An R-module M is said to be pure injective

if for every pure exact sequence 0 — T — N of R-modules, the induced sequence
Homp (N, M) — Hompg(T, M) — 0 is exact.

The following lemma and theorem improve results due to Belshoff [3], where he
studied the case n = 2. Now we generalize them for n > 2.

666



Lemma 3.3. Let N be an R-module and let n > 2 be an integer. Then idg(N) <
n provided that Ext%ﬁl(M *,N) =0 for every finitely generated R-module M.

Proof. Let
1 2 3
E: 0-N->E'SE'S B2

be an injective resolution of N. Since the Hom evaluation morphism
OmrEe: M Qg HOHIR(R, E.) — HOIIlR(HOHlR(M, R), E.)

is an isomorphism of complexes (see [5]) and Exty ' (M*, N) = 0, so the (n — 1)-st
cohomology module of M ® E* is zero. Therefore 0 — M ®r Im(a") — M ®@p E™
is exact. This means that Im(a™) is a pure submodule of the injective module E™,
and now by [7, Lemma 9.1.5], Im(a™) is injective and we get the assertion. O

It is straightforward that for a Gorenstein ring R, the following statements hold.

(i) If dim(R) = 0, then all R-modules are reflexive,
(ii) If dim(R) = 1, then all torsionless R-modules are reflexive.

Now we are ready to give a characterization of n-Gorenstein rings via Gorenstein
dimension of the dual of modules.

Theorem 3.4. For any integer n > 2, R is an n-Gorenstein ring if and only if for
every finitely generated R-module M, G-dimp(M*) < n — 2.

Proof. Let R be an n-Gorenstein ring and let M be a finitely generated R-
module. By [13, Corollary 1.5], M* is reflexive. It is straightforward that (M)
is a reflexive Ry-module, for every prime ideal p of R. By Theorem 2.3 we have
G-dimpg, (M;) < n — 2, since dim(R,) < n. According to [6, Proposition 1.15]
G-dimp(M*) < n — 2. Conversely, let M be a finitely generated R-module. By
hypothesis G-dimpg(M™*) is finite, so we have

n—2 > G-dimg(M*) = sup{i: Extl%(M*, R) # 0},

therefore Ext’s ' (M*, R) = 0. Now by Lemma 3.3 we conclude that idg(R) < n, so
R is an n-Gorenstein ring. O

In [7, Theorem 9.1.11], Enochs and Jenda showed that the property of being n-
Gorenstein imposes nice conditions on the homological properties of modules over
such rings. In the following we improve Enochs and Jenda’s result.
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Corollary 3.5. Let n > 2 be an integer. For a ring R the following statements
are equivalent.

(1) R is n-Gorenstein.

(2) G-dimp(M*) < n — 2 for all R-modules M.
(3) idg(F) < n for all flat R-modules F.

(4) idr(P) < n for all projective R-modules P.
()

(6)

fdr(E) < n for all injective R-modules E.
pdi(E) < n for all injective R-modules E.

Proof. By Theorem 3.4, (1) and (2) are equivalent and by [7, Theorem 9.1.11],
(1), (3), (4), (5) and (6) are equivalent. O

4. k-TORSIONLESS MODULES

In [10], Magek defined the k-torsionless modules for k£ > 0. Indeed he gave a gen-
eralization of the torsionless and reflexive modules, i.e., torsionless modules are 1-
torsionless and reflexive modules are 2-torsionless. The first result of this section is
to give a generalization of [4, Proposition 1.4.1] for k-torsionless modules. As an ap-
plication we show that the class of maximal Cohen-Macaulay modules and the class
of k-torsionless modules are equivalent over Gorenstein local ring with dimension
k. Finally, we show that every module over a k-Gorenstein ring has a k-torsionless

cover.

Definition 4.1. Let M be a module, and let
(n): PP LM —0
be a projective presentation of M. The Auslander dual, D(M), of M is defined as
D(M) = coker(u*: Pj — Py),
in other words, dualizing (%) we get an exact sequence
(r): 0 — M* L5 pr % pr . D(M) — 0.

Clearly, D(M) depends on which projective presentation (r) is used in the defi-
nition. In [10], Masek proved the uniqueness of D(M) up to projective equivalence.
Moreover, Magek proved that for an R-module M and natural R-homomorphism
Op: M — M** we have

ker(0yr) = Extp(D(M), R), coker(6yr) = Ext%h(D(M), R).
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In addition, Extz(D(M), R) = Ext; ?(M*, R), Vi > 3. The following definition is
from [10].

Definition 4.2. A module M is k-torsionless if Exth(D(M),R) = 0, Vi =
1,...,k. So 1-torsionless is torsionless, and 2-torsionless is reflexive. For k > 3,
M is k-torsionless if M is reflexive and Exth(M* R), Vi=1,... k — 2.

Note that M is k-torsionless if and only if M, is k-torsionless over R, for all
p € Spec(R).

Definition 4.3. An R-module M possesses property (S;) if
depthp (M) > min{k, depth(R,)}, Vp € Spec(R).

Proposition 4.4. Let M be an R-module such that G-dimgr(M) < oo and let
k > 0 be an integer. Then the following statements are equivalent.

(i) M is k-torsionless.
(ii) M possesses property (Sk).

Proof. By [10, Theorem 42], (i) and (ii) are equivalent if G-dimension of M
is locally finite. On the other hand, by [2, Corollary 6.3.4] “G-dimension of M is
finite” is equivalent to “G-dimension of M is locally finite”. O

The following theorem is one of the main results of this section. It gives a gener-
alization of [4, Proposition 1.4.1] for k-torsionless modules.

Theorem 4.5. Let R be a ring and let M be an R-module with G-dimp (M) < cc.
Then M is k-torsionless if and only if
(i) M, is k-torsionless for p € Spec(R) with depth(R,) < k — 1, and
(i) depthp (M) > k for p € Spec(R) with depth(Ry) > k.
Furthermore, by the Auslander-Bridger formula, M is k-torsionless if and only if
M, is k-torsionless for p € Spec(R) with depth(R,) < k — 1, and G-dimg, (M,) <
depth(R,) — k for p € Spec(R) with depth(R,) > k.

Proof. Assume that M is a k-torsionless R-module, then (i) is straightforward
and by Proposition 4.4, M possesses property (§k) So (ii) holds.

Conversely, by Proposition 4.4, it suffices to show that M satisfies property (§k),
since G-dimp(M) < oco. If depth(Ry) > k, then by (ii), depthp (M) > k and
so depthp (M) > min{k, depth(Ry,)}. Otherwise by (i), M, is a k-torsionless Rp-
module, hence M, possesses property (gk) So M is k-torsionless. 0
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Corollary 4.6. Let R be a Gorenstein local ring of dimension k and let M be
a nonzero R-module. Then the following statements are equivalent.

(i) M is k-torsionless.
(ii) G-dimg(M) =0.
(iii) M is maximal Cohen-Macaulay.

Proof. (i)implies (ii) by Theorem 4.5.

(if) = (iii): Assume that G-dimg(M) = 0, so by the Auslander-Bridger formula
the assertion holds.

(iif) = (i): Suppose that M is a maximal Cohen-Macaulay R-module, so M, is
a maximal Cohen-Macaulay Ry-module for all p € Supp(M). Therefore M possesses
property (§k) and hence by Proposition 4.4, M is k-torsionless. O

In the following we study the covering properties of the class of k-torsionless
modules. This result improves [3, Theorem 2.2].

Definition 4.7. Let 2 be the class of finitely generated k-torsionless R-
modules. An % -precover (it will be called a k-torsionless precover) of a finitely
generated R-module M is defined to be an R-homomorphism ¢: C' — M, for some
C € Z such that for any R-homomorphism f: D — M where D € 2, there is
a homomorphism g: D — C such that ¢g = f. An 2 -precover p: C — M is called
an 42 -cover (it will be called a k-torsionless cover) if whenever g: C' — C' is such
that pg = f, then g is an automorphism of C.

It is known that a projective precover of a module M always exists and when the
ring R has the property that the direct limit of projective modules is projective,
then M has a projective cover [7, Corollary 5.2.7]. Flat covers exist for all modules
over any ring [7, Theorem 7.4.4]. In [3, Theorem 2.2|, Belshoff proved that over
a Gorenstein local ring of dimension at most 2, every finitely generated module has
a reflexive cover. The next theorem gives a generalization of this result.

Theorem 4.8. Let R be a k-Gorenstein ring, and let M be an R-module. Then
M has a k-torsionless cover C' — M.

Proof. By [7, Theorem 11.6.9], M has a Gorenstein projective cover C' — M
and C is finitely generated. It follows from Corollary 4.6 that C — M is the k-
torsionless cover of M. ]

In [8, Corollary 2.6] and [9], Huneke and Wiegand proved the following result: Let
R be a complete intersection ring and let M and N be nonzero R-modules such that
Torf%(M7 N)=0 foralli>1. If M @g N is mazimal Cohen-Macaulay, then so are
M and N.
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In the following, we provide necessary and sufficient conditions which lead the
tensor product of k-torsionless modules to be k-torsionless.

Theorem 4.9. Let R be a complete intersection ring with dim(R) = k and let
M and N be nonzero R-modules such that Tor®(M,N) = 0 for all i > 1. Then
M ®pr N is k-torsionless if and only if M and N are k-torsionless.

Proof. “=” Assume that M ®pr N is k-torsionless. By Corollary 4.6, we get
that M ®pg N is maximal Cohen-Macaulay. Now by [8, Corollary 2.6], M and N are
maximal Cohen-Macaulay, so by Corollary 4.6, M and N are k-torsionless.

“<” Let p € Spec(R). Then M possesses property (§k), since M is k-torsionless.
So we have

depthp (My ®pg, Ny) = depthy (M) + depthp (Np/(pRy)Ny)
depthp, (My)

>
> min{k, depth(R,)}.

Therefore M ® r N possesses property (§k) and then by Proposition 4.4, the assertion
is proved. O
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