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Abstract. Let C be a triangulated category and X be a cluster tilting subcategory of C .
Koenig and Zhu showed that the quotient category C /X is Gorenstein of Gorenstein di-
mension at most one. But this is not always true when C becomes an exact category. The
notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous
generalization of exact categories and triangulated categories. Now let C be an extrian-
gulated category with enough projectives and enough injectives, and X a cluster tilting
subcategory of C . We show that under certain conditions, the quotient category C /X is
Gorenstein of Gorenstein dimension at most one. As an application, this result generalizes
the work by Koenig and Zhu.
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1. Introduction

Koenig and Zhu in [2] provided a general framework passing from triangulated

categories to abelian categories by factoring out cluster tilting subcategories. More

precisely, let C be a triangulated category and X a cluster tilting subcategory of C .

They showed that the quotient category C /X is an abelian category and that it is

Gorenstein of Gorenstein dimension at most one. Demonet and Liu in [1] gave a way

to construct abelian categories from some exact categories. More precisely, let B be
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an exact category and X be a cluster tilting subcategory of B. They showed that

the quotient category B/X is an abelian category. Hence, it is quite natural to ask

whether this abelian quotient category B/X is Gorenstein of Gorenstein dimension

at most one. Unfortunately, this result is not always true for an exact category. See

the following example.

Example 1.1. We revisit Example 3.2 presented in [3]. Let Λ be the k-algebra

given by the quiver
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with mesh relations, where k is a field. The AR-quiver of B := modΛ is given by
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We denote by “◦” in the AR-quiver the indecomposable objects which belong to

a subcategory and by “�” the objects which do not. Put
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where X is a cluster tilting subcategory of B. Then B/X ≃ (mod ΩX /P),

where P is the full subcategory of projective objects and Ω is a syzygy functor,

and its quiver is the following:
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It is not Gorenstein of Gorenstein dimension at most one. Note that the non-

projective injective object 2 has projective dimension 3.

Recently, the notion of an extriangulated category was introduced by Nakaoka

and Palu in [5] as a simultaneous generalization of exact categories and triangulated

categories. Cluster tilting theory gives a way to construct abelian categories from

some extriangulated categories. Let C be an extriangulated category with enough

projectives and enough injectives, andX a cluster tilting subcategory of C . Then the

quotient category C /X is an abelian category, see [4], [7]. We know that a module

category can be viewed as an extriangulated category with enough projectives and

enough injectives. Hence the abelian quotient category C /X is not Gorenstein of

Gorenstein dimension at most one in general, see Example 1.1.

Let C be an extriangulated category with enough projectives and enough injec-

tives, and let beX a subcategory of C . We denote the full subcategory of projective

objects in C by P . Dually, the full subcategory of injective objects in C is denoted

by I. We denote ΩX = CoCone(P ,X ), that is to say, ΩX is the full subcategory

of C consisting of objects ΩX such that there exists an E-triangle:

ΩX
a
−→ P

b
−→ X 99K,

with P ∈ P and X ∈ X . We call ΩX the syzygy of X . Dually we define the

cosyzygy of X by ΣX = Cone(X , I). Namely, ΣX is the full subcategory of C

consisting of objects ΣX such that there exists an E-triangle:

X
c
−→ I

d
−→ ΣX 99K

with I ∈ I and X ∈X . For more details, see [4], Definition 4.2 and Proposition 4.3.

Our main result is as follows, which gives sufficient conditions on the quotient

category C /X , which is Gorenstein of Gorenstein dimension at most one, where C

is an extriangulated category with enough projectives and enough injectives and X

is a cluster tilting subcategory of C .

Theorem 1.2 (see Theorem 3.7 for more details). Let C be an extriangulated

category with enough projectives and enough injectives. Suppose thatX is a cluster

tilting subcategory of C and A is the abelian quotient category C /X . Then:

(1) The category A has enough projective objects and enough injective objects.

(2) If Σ(ΩX ) ⊆ X and Ω(ΣX ) ⊆ X , then the category A is Gorenstein of

Gorenstein dimension at most one.

Note that any triangulated category can be viewed as an extriangulated cate-

gory with enough projectives and enough injectives. In this case, the condition
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Σ(ΩX ) ⊆ X and Ω(ΣX ) ⊆ X is automatically satisfied. As an application, our

result generalizes the work by Koenig and Zhu, see [2], Theorem 4.3.

The article is organised as follows: in Section 2, we review some elementary defi-

nitions and facts that we need to use. In Section 3, we prove the main result of this

article.

2. Preliminaries

Throughout this article, if X is a subcategory of an additive category C , then

we always assume that X is a full subcategory which is closed under isomorphisms,

direct sums and direct summands.

We recall some definitions and basic properties of extriangulated categories

from [5]. Let C be an additive category. Suppose that C is equipped with a biaddi-

tive functor

E : C
op × C → Ab,

where Ab is the category of abelian groups. For any pair of objects A,C ∈ C , an

element δ ∈ E(C,A) is called an E-extension. Thus, formally, an E-extension is

a triplet (A, δ, C). Let (A, δ, C) be an E-extension. Since E is a bifunctor, for any

a ∈ C (A,A′) and c ∈ C (C′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C′, A).

We abbreviate denote them by a∗δ and c∗δ. For any A,C ∈ C , the zero element

0 ∈ E(C,A) is called the spilt E-extension.

Definition 2.1 ([5], Definition 2.3). Let (A, δ, C), (A′, δ′, C′) be any pair of

E-extensions. A morphism

(a, c) : (A, δ, C)→ (A′, δ′, C′)

of E-extensions is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C′) in C , satisfying

the equality a∗δ = c∗δ′. Simply, we denote it as (a, c) : δ → δ′.

Definition 2.2 ([5], Definition 2.6). Let δ = (A, δ, C), δ′ = (A′, δC′) be any pair

of E-extensions. Let

C
ιC
−→ C ⊕ C′ ιC′

←− C′ and A
pA
←− A⊕A′ pA′

−→ A′

be coproduct and product in C , respectively. Remark that, by the biadditivity of E,

we have a natural isomorphism,

E(C ⊕ C′, A⊕A′) ∼= E(C,A) ⊕ E(C,A′)⊕ E(C′, A)⊕ E(C′, A′).
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Let δ⊕ δ′ ∈ E(C⊕C′, A⊕A′) be the element corresponding to (δ, 0, 0, δ′) through

the above isomorphism. This is the unique element which satisfies

E(ιC , pA)(δ ⊕ δ′) = δ, E(ιC , pA′)(δ ⊕ δ′) = 0,

E(ιC′ , pA)(δ ⊕ δ′) = 0, E(ιC′ , pA′)(δ ⊕ δ′) = δ′.

If A = A′ and C = C′, then the sum δ + δ′ ∈ E(C,A) of δ, δ′ ∈ E(C,A) is

obtained by

δ + δ′ = E(∆C ,∇A)(δ ⊕ δ′),

where ∆C =
(

1
1

)

: C → C ⊕ C, ∇A = (1, 1): A⊕A→ A.

Definition 2.3 ([5], Definitions 2.7 and 2.8). Let A,C ∈ C be any pair of

objects. Sequences of morphisms in C

A
x
−→ B

y
−→ C and A

x′

−→ B′ y′

−→ C

are said to be equivalent if there exists an isomorphism b ∈ C (B,B′) which makes

the following diagram commutative:

A
x // B

y //

≃ b

��

C

A
x′

// B′
y′

// C.

We denote the equivalence class of A
x
−→ B

y
−→ C by [A

x
−→ B

y
−→ C].

For any A,C ∈ C , we denote 0 =
[

A
(10)
−→ A⊕ C

(0,1)
−→ C

]

.

For any two equivalence classes, we denote as

[A
x
−→ B

y
−→ C]⊕ [A′ x′

−→ B′ y′

−→ C′] = [A⊕A′ x⊕x′

−→ B ⊕B′ y⊕y′

−→ C ⊕ C′].

Definition 2.4 ([5], Definition 2.9). Let s be a correspondence which associates

an equivalence class s(δ) = [A
x
−→ B

y
−→ C] to any E-extension δ ∈ E(C,A). This s

is called a realization of E if it satisfies the following condition:

⊲ Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, with

s(δ) = [A
x
−→ B

y
−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C′].
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Then, for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) which makes the

following diagram commutative:

A
x //

a

��

B
y //

b

��

C

c

��
A′

x′

// B′
y′

// C′.

In the above situation, we say that the triplet (a, b, c) realizes (a, c).

Definition 2.5 ([5], Definition 2.10). A realization s of E is called additive if it

satisfies the following conditions.

(1) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

(2) For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C′, A′),

s(δ ⊕ δ′) = s(δ)⊕ s(δ′)

holds.

Definition 2.6 ([5], Definition 2.12). A triplet (C ,E, s) is called an externally

triangulated category (or extriangulated category for short) if it satisfies the following

conditions:

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′, A′) be any pair of E-extensions, realized as

s(δ) = [A
x
−→ B

y
−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C′].

For any commutative square

A
x //

a

��

B
y //

b

��

C

A′
x′

// B′
y′

// C′

in C , there exists a morphism (a, c) : δ → δ′ satisfying cy = y′b.

(ET3)op Dual of (ET3).

(ET4) Let (A, δ,D) and (B, δ′, F ) be E-extensions realized by

A
f
−→ B

f ′

−→ D and B
g
−→ C

g′

−→ F,
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respectively. Then there exists an object E ∈ C , a commutative diagram

A
f // B

f ′

//

g

��

D

d

��
A

h // C

g′

��

h′

// E

e

��
F F

in C , and an E-extension δ
′′

∈ E(E,A) realized by A
h
−→ C

h′

−→ E, which

together satisfy the following compatibilities.

(i) D
d
−→ E

e
−→ F realizes f ′

∗δ
′,

(ii) d∗δ′′ = δ,

(iii) f∗δ
′′ = e∗δ′.

(ET4)op Dual of (ET4).

Remark 2.7. We know that both exact categories and triangulated categories

are extriangulated categories (see [5], Example 2.13) and extension-closed subcate-

gories of extriangulated categories are again extriangulated (see [5], Remark 2.18).

Moreover, there exist extriangulated categories which are neither exact categories

nor triangulated categories, see [5], Proposition 3.30 and [6], Example 4.14.

We use the following terminology.

Definition 2.8 ([5], Definitions 2.15, 2.19, 3.23 and 3.25). Let (C ,E, s) be an

extriangulated category.

(1) A sequence A
x
−→ B

y
−→ C is called a conflation if it realizes some E-extension

δ ∈ E(C,A). In this case, x is called an inflation and y is called a deflation.

(2) If a conflation A
x
−→ B

y
−→ C realizes δ ∈ E(C,A), we call the pair (A

x
−→

B
y
−→ C, δ) an E-triangle, and write it in the following way:

A
x
−→ B

y
−→ C

δ
99K .

(3) Let A
x
−→ B

y
−→ C

δ
99K and A′ x′

−→ B′ y′

−→ C′
δ′

99K be any pair of E-triangles.

If a triplet (a, b, c) realizes (a, c) : δ → δ′, then we write it as

A
x //

a

��

B
y //

b

��

C
δ //❴❴❴

c

��
A′

x′

// B′
y′

// C′
δ′ //❴❴❴

and call (a, b, c) a morphism of E-triangles.
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(4) An object P ∈ C is called projective if for any E-triangle A
x
−→ B

y
−→ C

δ
99K

and any morphism c ∈ C (P,C), there exists b ∈ C (P,B) satisfying yb = c. We

denote the full subcategory of projective objects by P ⊆ C . Dually, the full

subcategory of injective objects is denoted by I ⊆ C .

(5) We say that C has enough projective objects if for any object C ∈ C there exists

an E-triangle A
x
−→ P

y
−→ C

δ
99K satisfying P ∈ P . We can define the notion

of having enough injectives dually.

Definition 2.9 ([7], Definition 2.10). Let (C ,E, s) be an extriangulated category

and X a subcategory of C .

⊲ X is called rigid if E(X ,X ) = 0;

⊲ X is called cluster tilting if it satisfies the following conditions:

(a) X is a functorially finite in C ;

(b) M ∈ X if and only if E(M,X ) = 0;

(c) M ∈ X if and only if E(X ,M) = 0.

By the definition of a cluster tilting subcategory, we can conclude:

Lemma 2.10. Let (C ,E, s) be an extriangulated category with enough projectives

and enough injectives.

(i) If X is a cluster tilting subcategory of C , then P ⊆X and I ⊆X .

(ii) X is a cluster tilting subcategory of C if and only if

(1) X is rigid;

(2) for any C ∈ C , there is an E-triangle C
a
−→ X1

b
−→ X2

δ
99K, where

X1, X2 ∈ X ;

(3) for any C ∈ C , there is an E-triangle X3
c
−→ X4

d
−→ C

η
99K, where

X3, X4 ∈ X .

P r o o f. (i) This follows from Proposition 3.24 and its dual in [5].

(ii) Assume that X is cluster tilting. It is obvious that X is rigid. For any

C ∈ C , sinceX is contravariantly finite in C , then there is a rightX -approximation

u : X → C of C. Since C has enough projectives, there is an E-triangle A
v
−→ P

w
−→

C
θ

99K, where P ∈ P . It follows that w : P → C is a deflation. PutX4 := X⊕P ∈X

since P ∈ P ⊆X and d := (u,w). By [5], Corollary 3.16, we have that d : X4 → C

is a deflation. Thus there is an E-triangle

(2.1) X3
c
−→ X4

d
−→ C

η
99K .
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Applying the functor HomC (X ,−) to the E-triangle (2.1), we have the following

exact sequence:

HomC (X , X4)
HomC (X ,d) // HomC (X , C) // E(X , X3) // E(X , X4) = 0.

Since u : X → C is a rightX -approximation of C, it is easy to see that d : X → C is

also a rightX -approximation of C. It follows that HomC (X , d) is an epimorphism.

Thus E(X , X3) = 0 implies X3 ∈X since X is cluster tilting.

Similarly, one can show that for any C ∈ C , there is an E-triangle C
a
−→ X1

b
−→

X2
δ

99K, where X1, X2 ∈ X .

Now we assume that X satisfies the conditions (1), (2) and (3). For any C ∈ C ,

there is an E-triangle

X3
c
−→ X4

d
−→ C

η
99K,

where X3, X4 ∈ X . Applying the functor HomC (X ,−) to this E-triangle, we have

the following exact sequence:

HomC (X , X4)
HomC (X ,d) // HomC (X , C) // E(X , X3).

Since X is rigid, we have E(X , X3) = 0. This shows that HomC (X , d) is an

epimorphism. Thus d : X → C is a right X -approximation of C. Hence X is

contravariantly finite in C . Similarly, we can show that X is covariantly finite in C .

So X is functorially finite in C .

Since X is rigid, we obtain that E(M,X ) = 0 for any M ∈ X . Now we suppose

E(M,X ) = 0. Since M ∈ C , then there is an E-triangle

X5
f
−→ X6

g
−→M

ϕ
99K,

where X5, X6 ∈ X . It follows that ϕ ∈ E(M,X5) = 0. By [5], Corollary 3.5, we

get that g is a retraction. Thus M is a direct summand of X6 implies M ∈ X

since X6 ∈ X .

Similarly, we can show that M ∈X if and only if E(X ,M) = 0. �

Let C be an additive category and X a subcategory of C . We denote by C /X

the category whose objects are objects of C and whose morphisms are elements

of HomC (A,B)/X (A,B) for A,B ∈ C , where X (A,B) is the subgroup of

HomC (A,B) consisting of morphisms which factor through an object in X . The

category is called the quotient category of C by X . For any morphism f : A → B

in C , we denote by f the image of f under the natural quotient functor C → C /X .

Theorem 2.11 ([7], Theorem 3.4 and [4], Theorem 3.2). Let C be an extrian-

gulated category with enough projectives and enough injectives, and X a cluster

tilting subcategory of C . The quotient category C /X is an abelian category.
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3. Gorenstein dimension at most one

A commutative square

A
a //

c

��

B

d

��
C

b // D

in C is called weak pushout if two morphisms f ∈ HomC (C,E) and g ∈ HomC (B,E)

satisfy ga = fc, there exists h ∈ HomC (D,E) which makes the following diagram

commutative:

A
a //

c

��

B

d

�� g

��

C
b //

f ,,

D
h

  ❆
❆

❆
❆

E.

Lemma 3.1. Let C be an extriangulated category with enough projectives and

enough injectives. Suppose thatX is a cluster tilting subcategory of C and A is the

abelian quotient category C /X . Then any object C ∈ C admits an epimorphism β :

ΩX → C for some X ∈X in A. Dually any object C ∈ C admits a monomorphism

α : C → ΣX for some X ∈X in A.

P r o o f. We only prove the first statement. The second statement is dual.

Since X is cluster tilting, there is an E-triangle C
a
−→ X0

b
−→ X199K, where

X0, X1 ∈X . By definition ΩX0 admits an E-triangle

(3.1) ΩX0
u
−→ P

v
−→ X099K.

By (ET4)op, we have the following commutative diagram made of E-triangles

(3.2) ΩX0

��

ΩX0

��
ΩX1

u //

β

��

P
v //

γ

��

X1

C
a // X0

b // X1.

We claim that β : ΩX1 → C is an epimorphism in A. In fact, assume that c̄ : C → B

is any morphism in A such that c̄◦β = 0. Then cβ factors throughX . Applying the
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functor HomC (−,X ) to the E-triangle (3.1), we have the following exact sequence:

HomC (P,X )
HomC (u,X ) // HomC (ΩX0,X ) // E(X0,X ) = 0.

This shows that u is a left X -approximation of ΩX1. It follows that there exists

a morphism w : P → B such that cβ = wu.

By [5], Lemma 3.13, the lower-left square in the diagram (3.2)

ΩX1
u //

β

��

P

γ

��
C

a // X0

is a weak pushout. Thus there exists a morphism h : X0 → B which makes the

following diagram commutative:

ΩX1
u //

β

��

P

γ

�� w

��

C
a //

c
,,

X0

h

  ❆
❆

❆
❆

B

which implies c̄ = 0. Hence β is an epimorphism in A. �

The following lemma can be found in [4], Proposition 1.20.

Lemma 3.2. Let C be an extriangulated category and A
f
−→ B

g
−→ C

δ
99K be

any E-triangle in C . Assume that x : A → D is any morphism in C . Then there

exists a commutative diagram

A
f //

x

��

B
g //

y

��

C
δ //❴❴❴

D
a // F

b // C
x∗δ //❴❴❴

of E-triangles in C , and moreover

A
(fx) // B ⊕D

(y,−a) // F
b∗δ //❴❴❴❴

becomes an E-triangle in C .
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Lemma 3.3. Let C be an extriangulated category with enough projectives and

enough injectives. Suppose thatX is a cluster tilting subcategory of C and A is the

abelian quotient category C /X .

(1) If f : A→ B is a morphism in C , then there exists an inflation α =
(

f
a

)

: A→

X0 ⊕B in C such that α = f .

(2) If f : A → B is a morphism in C , then there exists a deflation β = (f,−b) :

X1 ⊕A→ B in C such that β = f .

P r o o f. We only show the first one, the second is dual. SinceX is cluster tilting,

there exists an E-triangle

A
a
−→ X0

b
−→ X199K,

where X0, X1 ∈X . By Lemma 3.2, we get the following commutative diagram made

of E-triangles

A
a //

f

��

X0
b //

y

��

X1
//❴❴❴

B
c // C

d // X1
//❴❴❴ .

Moreover, A
α=(fa) // X0 ⊕B

(y,−c) // C //❴❴❴❴ is an E-triangle in C .

This shows that α is an inflation and α = f . �

Lemma 3.4. Let C be an extriangulated category with enough projectives and

enough injectives. Suppose that X is a cluster tilting subcategory of C . Then ΩX

and ΣX are closed under direct summands.

P r o o f. See the proof of Lemma 5.9 in [4]. �

Remark 3.5. Let C be an extriangulated category with enough projectives and

enough injectives. If X is a cluster tilting subcategory of C , then ΩX /X =

ΩX /P and ΣX /X = ΣX /I. For convenience, we denote ΩX := ΩX /X and

ΣX := ΣX /X .

P r o o f. We only proveΩX /X =ΩX /P . By duality, we haveΣX /X =ΣX /I.

We first prove that a morphism f : ΩX → C factors through P with X ∈ X if

and only if it factors throughX . Since P ⊆X , we only need to prove that f factors

through X implies it factors through P . Assume that f factors throughX , namely

that there exist morphisms u : ΩX → X2 and v : X2 → C with X2 ∈ X such that

f = vu. By the definition of ΩX , we have the following E-triangle:

ΩX
a
−→ P

b
−→ X99K,
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where P ∈ P . Since X is cluster tilting, there exists an E-triangle:

X0
c
−→ X1

d
−→ C99K,

where X0, X1 ∈ X . Since E(X ,X ) = 0, we have that d is a rightX -approximation

of C. Then there exists a morphism w : X2 → X1 such that v = dw and then

f = dwu. Since a is a left X -approximation of ΩX , there exists a morphism h :

P → X1 such that wu = ha. It follows that f = (dh)a. This shows that f factors

through P .

Thus by definition we have ΩX /X = ΩX /P . �

Lemma 3.6. Let C be an extriangulated category with enough projectives and

enough injectives. Suppose that X is a cluster tilting subcategory of C and A is

the abelian quotient category C /X . Then an object M of A is a projective object

if and only if M ∈ ΩX . Dually an object N of A is an injective object if and only

if N ∈ ΣX .

P r o o f. We prove the first statement only, the second one is obtained dually.

Let g : B → C be an epimorphism in A and β : ΩX → C be any morphism in C ,

where X ∈ X . By Lemma 3.3, we can assume that it admits an E-triangle

A
f
−→ B

g
−→ C99K.

Since X is cluster tilting, there exists an E-triangle

B
a
−→ X0

b
−→ X199K,

where X0, X1 ∈ X . By (ET4), we get the following commutative diagram made of

E-triangles:

(3.3) A
f // B

g //

a

��

C

u

��
A

c // X0

b

��

d // D

v

��
X1 X1.

It follows that ug = da and then ū ◦ g = 0. Since g is an epimorphism, we have

ū = 0. By definition, ΩX admits an E-triangle ΩX
p
−→ P

q
−→ X99K, where P ∈ P .

Since ū ◦ β = 0, then uβ factors through X . As E(X ,X ) = 0, we obtain that p
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is a left X -approximation of ΩX . Thus there exists a morphism r : P → D such

that rp = uβ. Since P is a projective object, there exists a morphism w : P → X0

such that r = dw. It follows that d(wp) = uβ. By the dual of [5], Lemma 3.13, the

upper-right square in the diagram (3.3)

B
g //

a

��

C

u

��
X0

d // D

is a weak pullback. Thus there exists a morphism h : ΩX → B which makes the

following diagram commutative:

ΩX
β

$$

h

""❊
❊

❊
❊

wp

��

B
g //

a

��

C

u

��
X0

d // D.

Hence β = g ◦ h̄. This shows that ΩX is a projective object in A.

Conversely, assume thatM is a projective object in A; by Lemma 3.1, there exists

an epimorphism β : ΩX →M for some X ∈X in A. Thus M is a direct summand

of ΩX in A. Hence by Lemma 3.4, we imply that M lies in ΩX . �

Recall that an abelian category with enough projectives and injectives is called

Gorenstein if all projective objects of this category have finite injective dimension,

and all injective objects have finite projective dimension. The maximum of the

injective dimensions of projectives and the projective dimensions of injectives is called

Gorenstein dimension of the category.

Theorem 3.7. Let C be an extriangulated category with enough projective ob-

jects and enough injective objects. Suppose that X is a cluster tilting subcategory

of C and A is the abelian quotient category C /X . Then:

(1) The category A has enough projective objects and enough injective objects.

(2) If Σ(ΩX ) ⊆ X and Ω(ΣX ) ⊆ X , then the category A is Gorenstein of

Gorenstein dimension at most one.

P r o o f. (1) This follows from Lemmas 3.1 and 3.6.

(2) Let ΣX be any injective object in A. Since X is cluster tilting, there exists

an E-triangle

ΣX
a
−→ X0

b
−→ X199K,
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where X0, X1 ∈X . By the definition of ΩX , we have the following E-triangle:

ΣX0
u
−→ P0

v
−→ X099K,

where P0 ∈ P . By (ET4)
op, we have the following commutative diagram made of

E-triangles:

(3.4) ΩX0

p

��

ΩX0

u

��
ΩX1

c //

q

��

P0
d //

v

��

X1
//❴❴❴

ΣX
a //

��✤
✤
✤ X0

b //

��✤
✤
✤

X1
//❴❴❴ .

By the definition of ΩX , we have the following E-triangle Ω(ΣX)
x
−→ P1

y
−→

ΣX99K, where P1 ∈ P . By the dual of [5], Proposition 3.17, we obtain the following

commutative diagram made of E-triangles:

(3.5) ΩX0

(01)

��

ΩX0

p

��
Ω(ΣX)

(xh) // P1 ⊕ ΩX0

(−p′, p) //

(1,0)

��

ΩX1
//❴❴❴❴

q

��
Ω(ΣX)

x // P1
y //

��✤
✤
✤
✤ ΣX //❴❴❴❴

��✤
✤
✤
✤

.

We claim that

Ω(ΣX)
h̄
−→ ΩX0

p̄
−→ ΩX1

q̄
−→ ΣX → 0

is an exact sequence in A. In fact, in the diagram (3.5) we obtain that qp = 0 and

(−p′, p)

(

x

h

)

= 0
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which implies q̄ ◦ p̄ = 0 and p̄ ◦ h̄ = 0. This shows that Im(p̄) ⊆ Ker(q̄) and

Im(h̄) ⊆ Ker(p̄).

Now we show that Ker(q̄) ⊆ Im(p̄).

Let α : M → ΩX be any morphism in A such that q̄ ◦ α = 0. Then qα factors

throughX . By Remark 3.5, we know that qα factors through P . That is to say, there

exist morphisms s : M → P2 and t : P2 → ΣX such that qα = ts, where P2 ∈ P .

Since P2 is a projective object, there exists a morphism β : P2 → ΩX1 such that

qβ = t and then

q(α − βs) = qα− qβs = qα− ts = 0.

Thus there exists a morphism γ : M → ΩX0 such that α − βs = pγ and then

α = βs+ pγ. It follows that α = p̄ ◦ γ which implies Ker(q̄) ⊆ Im(p̄).

Now we show that Ker(p̄) ⊆ Im(h̄).

Let l̄ : N → ΩX0 be any morphism in A such that p̄ ◦ l̄ = 0. Then pl factors

throughX . By Remark 3.5, we know that pl factors through P . That is to say, there

exist morphisms f : N → P3 and g : P3 → ΩX1 such that pl = gf , where P3 ∈ P .

Since P3 is a projective object, there exists a morphism
(

m
n

)

: P3 → P1 ⊕ ΩX0 such

that

g = (−p′, p)

(

m

n

)

= −p′m+ pn

and then

(−p′, p)

(

mf

nf − l

)

= (−p′m+ pn)f − pl = 0.

Thus there exists a morphism w : N → Ω(ΣX) such that
(

x
h

)

w =
(

mf
nf−l

)

and then

l = nf − hw. It follows that l̄ = h̄ ◦ (−w) which implies Ker(p̄) ⊆ Im(h̄).

Now we show that q̄ is an epimorphism in A.

Let ī : ΣX → L be any morphism in A such that ī ◦ q̄ = 0. Then iq factors

throughX , namely, there exist morphisms j : ΩX1 → X2 and k : X2 → L such that

iq = kj. Since E(X ,X ) = 0, we have that c is a left X -approximation of ΩX1.

Thus there exists a morphism k′ : P0 → X2 such that k
′c = j. It follows that

iq = (kk′)c. By [5], Lemma 3.13, the lower-left square in the diagram (3.4)

ΩX1
c //

q

��

P0

v

��
ΣX

a // X0
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is a weak pushout. Thus there exists a morphism z : X0 → L which makes the

following diagram commutative

ΩX1
c //

q

��

P0

v

��
kk′

��

ΣX
a //

i ,,

X0

z

  ❆
❆

❆
❆

B

which implies ī = 0. Hence q̄ is an epimorphism in A. This shows that Ω(ΣX)
h̄
−→

ΩX0
p̄
−→ ΩX1

q̄
−→ ΣX → 0 is an exact sequence in A.

In the diagram (3.4), we obtain that aq = vc and u = cp. In the diagram (3.5),

we obtain that y = −qp′ and p′x = ph. Thus we have that ay = −aqp′ = v(−cp′)

and (−cp′)x = −cph = −uh. Hence we have the following commutative diagram of

E-triangles

Ω(ΣX)
x //

−h

��

P1
y //

−cp′

��

ΣX //❴❴❴

a

��
ΩX0

u // P0
v // X0

//❴❴❴ .

By the definition of Ω, we have Ωa=−h and then h̄=−Ωā. Since Ωa : Ω(ΣX)→ΩX0

and Ω(ΣX ) ⊆ X , we have Ωā = 0 in A. Namely, h̄ = 0 in A. So we obtain that

0 → ΩX0
p̄
−→ ΩX1

q̄
−→ ΣX → 0 is an exact sequence in A. This shows that any

injective object ΣX in A has projective dimension at most one.

Dually, we can show that any projective object in A has injective dimension at

most one.

Therefore A is Gorenstein of Gorenstein dimension at most one. �

We conclude this section with two examples illustrating our result. Since A is

Gorenstein of Gorenstein dimension at most one, it is either hereditary or of infinite

global dimension.

In the following examples, we denote by “◦” in a quiver the objects which belong

to a subcategory and by “�” the objects which do not.

Example 3.8. Let Λ be the path algebra of the following quiver

1 2oo 3oo 4oo 5ss oo
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then we obtain the AR-quiver of C := modΛ.

1

""❉
❉❉

❉ 2

%%▲▲
▲▲

▲▲ 3

%%▲▲
▲▲

▲▲ 4

$$■
■■

■■
5

2

1

""❉
❉❉

❉

::✉✉✉✉✉
3

2

##❍
❍❍

❍❍

99rrrrrr
4

3

99rrrrrr

##❍
❍❍

❍❍

99rrrrrr
5

4

<<③③③③

3

2

1

;;✈✈✈✈✈

!!❉
❉❉

❉

4

3

2

;;✈✈✈✈✈

!!❉
❉❉

❉

5

4

3

<<③③③③

4

3

2

1

==③③③③ 5

4

3

2

==③③③③

It is straightforward to verify that the subcategory

X = ◦ � � � ◦

◦ � � ◦

◦ � ◦

◦ ◦

is a cluster tilting subcategory of C . Note that Σ(ΩX ) ⊆ X and Ω(ΣX ) ⊆ X .

By Theorem 3.7, we have that C /X is Gorenstein of Gorenstein dimension at most

one. Moreover, it is hereditary.

Example 3.9. Let Λ be the k-algebra given by the quiver

1
x

��✁✁
✁✁

6
xoo

2

x ��❂
❂❂

❂ 5

x^^❂❂❂❂

3 y
// 4

x

@@✁✁✁✁

with relations x4 = 0, the AR-quiver of C := modΛ is given by:

4

5

6

1
��✽

✽✽

3

4

5

6
��✽

✽✽

2

3

4

5
��✽

✽✽

1

2

3

4
��✽

✽✽

6

1

2

3
��✽

✽✽

5

6

1

2
��✽

✽✽

5

6

1
��❂

❂❂

CC✝✝✝
4

5

6
��❂

❂❂

CC✝✝✝
3

4

5
��❂

❂❂

CC✝✝✝
2

3

4
��❂

❂❂

CC✝✝✝
1

2

3
��❂

❂❂

CC✝✝✝
6

1

2
��❂

❂❂

CC✝✝✝
5

6

1

5

6

!!❈
❈❈

@@✂✂✂
4

5

!!❈
❈❈

@@✂✂✂
3

4

!!❈
❈❈

@@✂✂✂
2

3

!!❈
❈❈

@@✂✂✂
1

2

!!❈
❈❈

@@✂✂✂
6

1

!!❈
❈❈

@@✂✂✂

6

==④④④
5

==④④④
4

==④④④
3

==④④④
2

==④④④
1

==④④④
6

452



The first column and the last column are identical. It is straightforward to verify

that the subcategory

◦

��❃
❃❃

◦

��❃
❃❃

◦

��❃
❃❃

◦

��❃
❃❃

◦

��❃
❃❃

◦

��❃
❃❃

X : �

��❂
❂❂
❂

@@���
◦

��❂
❂❂

@@���
�

��❂
❂❂
❂

@@���
◦

��❂
❂❂

@@���
�

��❂
❂❂
❂

@@���
◦

��❂
❂❂

@@���
�

�

��❃
❃❃
❃

@@✁✁✁
�

��❃
❃❃

@@✁✁✁✁
�

��❃
❃❃
❃

@@✁✁✁
�

��❃
❃❃

@@✁✁✁✁
�

��❃
❃❃
❃

@@✁✁✁
�

��❃
❃❃

@@✁✁✁✁

◦

??���
�

??����
◦

??���
�

??����
◦

??���
�

??����
◦

is a cluster tilting subcategory of C . Note that Σ(ΩX ) ⊆ X and Ω(ΣX ) ⊆ X .

By Theorem 3.7, we have that C /X is Gorenstein of Gorenstein dimension at most

one. Moreover, it is of infinite global dimension.
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